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Summary 

We describe the numerical construction of constant-alpha force-free fields with vanishing normal components 
on the boundary of a torus by a boundary integral equation approach. 

1. Introduction 

The equilibrium configuration of an electrically conducting fluid - for instance a plasma 
- permeated by a sufficiently strong magnetic field is determined mainly through the 
magnetic force. Since in such a magnet0hydrostatic equilibrium there are no other forces 
to balance the Lorentz force, the magnetic field B must satisfy the equation 

[curl B, B] = 0 (1.1) 

and is called a force-free field (Liist and Schliiter [15]). Equation (1.1) can also be written 
in the form 

curl B = aB (1.2) 

where the scalar a, in general, is space dependent. Making use of div B = 0 it follows that 
(grad a, B) = 0, which means that a must be constant along the field lines of B. When a 
is constant everywhere, the basic equation (1.2) reduces to a linear equation which of 
course is more easily accessible than the general nonlinear case. Solutions of the linear 
equation are denoted as constant-alpha force-free fields. The study and investigation of 
constant-alpha force-free fields is of principle interest since it provides a first insight into 
the possible structure of magnetohydrostatic equilibrium configurations. 

Equation (1.1) is studied in astrophysics, for instance, in connection with the investiga- 
tion of equilibria in sunspots and the possibility of force-free magnetic fields in interstel- 
lar space (see [6] and [18]). Force-free fields also are of considerable interest for toroidal 
equilibrium configurations in the efforts on plasma confinement and controlled thermo- 
nuclear fusion (see [8]). In hydrodynamics, solutions of (1.1) are also called Beltrami fields 
and they describe steady incompressible rotational fluid flows with a global Bernoulli 
constant independent from the streamlines (see [2] and [19]). 
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In this paper we will consider constant-alpha force-free fields with vanishing normal 
components on the boundary of a torus, that is, an axially symmetric doubly connected 
domain. In Section 2 we will establish a general result on the existence and uniqueness of 
such fields in general doubly connected domains. Our analysis makes results which were 
previously obtained in [11] more concise. In Section 3 the solution of this boundary-value 
problem is transformed into a boundary integral equation which in the case of axial 
symmetry reduces to an equation extended over the boundary of the cross-section of the 
torus. Finally, in Section 4, the numerical treatment of this integral equation is discussed. 
For a reasonable approximation we have to appropriately treat the logarithmic singulari- 
ties of the kernels. This is achieved by extending methods used by Martensen [16] for 
axially symmetric boundary-value problems in the limiting potential-theoretic case a = 0. 
It also extends the integral-equation method for two-dimensional constant-alpha force-free 
fields of [13] to the axially symmetric case. Since our integral equation is based on the 
fundamental solution to the Helmholtz equation our methods also can be applied to 
axially symmetric boundary-value problems in time-harmonic acoustic and electromag- 
netic wave propagation. Numerical examples are included at the end of the paper in form 
of figures for constant-alpha force-free fields in a torus with cross-section given by circles 
and ellipses. 

2. The boundary-value problem 

Let D be a doubly connected domain in R 3. We assume the boundary OD to be 
connected and of class C 2,a. By n we denote the unit normal vector to the boundary aD 
directed into the exterior of D. Having in mind that any doubly connected domain is 
topologically equivalent to a torns we can choose a surface S in D such that simulta- 
neously the set D \ S  becomes simply connected and the boundary as  forms a basis of 
the first homology group of the complement R3\D.  Furthermore, we choose a closed 
curve C, lying on the boundary aD and forming a basis of the first homology group of D. 

Harmonic vector fields, that means solutions Z to the system 

d i v Z = 0 ,  c u r l Z - - 0  i n D  (2.1) 

with vanishing normal components 

(n, Z)  = 0  on aD, (2.2) 

are called Neumann vector fields (see [17]). By (a, b) and [a, b] we denote the usual 
scalar and vector product of the vectors a and b in C 3, respectively. For a doubly 
connected domain D there exists exactly one linearly independent Neumann vector field 
Z and it can be normalized by prescribing its flux 

£ ( . ,  z )  ds = 1 (2.3) 

through the surface S with normal vector n. In the sequel, we always denote by Z the 
Neumann field satisfying (2.3). 
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Consider the following homogeneous Neumann problem for constant-alpha force-free 
fields: find a vector field B ~ CX(D) n C(D)  satisfying 

curl B = aB in D (2.4) 

with vanishing normal components 

(n ,  B ) = 0  on3D.  (2.5) 

It is the aim of this paper to first establish that for each a this boundary-value problem is 
solvable. In the second part we will describe a boundary integral equation approach to 
numerically construct solutions in the special case of an axially symmetric domain D. 

For  the existence proof we will need the following three Lemmata (see also [17] and 
[21]). In the sequel, we always will denote by fl a HSlder exponent with 0 < fl < 1. 

Lemma 2.1. Let a ~  C°'a(D) be a divergence-free (in the sense of the limit integral 
definition) vector field with vanishing normal components (n, a ) =  0 on OD and vanish- 

ing flux fo(n, a) ds = 0 through S. Then there exists a unique solution v ~ CI(D) n C(D) 
t )  

of 

d i v v = 0 ,  cu r lv - - -a  i n D  (2.6) 

with vanishing tangential components 

[n,  v] = 0  onOD. (2.7) 

The solution belongs to Cx'O(D) and satisfies an a-priori estimate for the HSlder norms 

II v II 1,fl ~ C II a II 0,a (2 .8)  

with some constant C. If a ~ CI 'a(D) then v belongs to C2(D). 
Note, that by Stokes' theorem and the vector identity (n, curl v ) =  -d iv [n ,  v] on aD 

the conditions div a = 0 in D, (n, a) = 0 on 0D and fs(n, a) ds = 0 are necessary for the 
compatibility of (2.6) and (2.7). 

Proof: Uniqueness follows from the fact that any curl-free field satisfying (2.7) is also 
circulation-free and therefore can be represented in the form v = grad ~o. Then div v = 0 
requires Aep = 0 in D and from the boundary condition (2.7) we have ~ = const on ~D. 
Hence, ¢p = const and v = 0 in D. 

We will prove existence in two steps. First we construct a solution to the inhomogeneous 
system (2.6). Define the vector potential 

1 fo a(y) d s ( y ) ,  x ~ R  3, A ( x )  := ~-~ l y - x l  

with density a. Using div a = 0 in D and (n, a ) =  0 on OD and employing Gauss' 
theorem we derive div A = 0 in D. Therefore, w -'= curl A satisfies div w = 0 and curl w = 
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curl curl A = - A A  + grad divA = a in D. From the regularity properties of volume 
potentials (see [7], Lemma 4.4 and Theorem 6.37) we observe that w belongs to CI 'a(D) 
and satisfies an inequality of the form (2.8). 

In the second step we take care of the homogeneous boundary condition (2.7). For the 
tangential components of w on the boundary we have div[n, w ] = - ( n ,  curl w ) =  
- ( n ,  a ) = 0  on aD. In addition, by Stokes' theorem, we have vanishing circulations 
fc(t ,  w) ds = 0 and fas(t, w) ds = fs(n,  curl w) ds = fs(n, a) ds = 0. Therefore, the 
tangential components of w on aD can be represented in the form 

w t~" = grad f 

with some function f ~  C2'a(0D). Let u denote the unique solution to the Dirichlet 
problem Au = 0 in D and u = f  on aD. Then, incorporating inequality (2.8) for w, we 
have an a-priori estimate (see [7], Theorems 6.6 and 6.14) 

II u II 2,~ < q II f II 2,~ ~ C2 II a II 0,~ 

with some constants C 1 and C 2. Now, v .'= w - grad u solves the boundary-value problem 
(2.6) and (2.7) and satisfies an estimate (2.8). If a e CX,a(D), then w obtained from the 
volume potential A is in C2'P(D). Therefore, since u is analytic in D, in this case v 
belongs to C2(D). 

Lemma 2.2. Let a ~ C°'P(D) be a divergence-free vector field. Then there exists a unique 
solution v e CX(D) n C(D)  of 

d i v o = 0 ,  c u r l v = a  i n D  (2.9) 

with vanishing normal components 

(n,  v) = 0 o n 0 D  (2.10) 

and vanishing flux 

f s (n ,  v) ds = 0 (2.11) 

through S. The solution belongs to CI 'a(D) and satisfies an a-priori estimate 

II o II 1,~ < C II a II 0,~ (2 .12 )  

with some constant C. 

The proof is similar to Lemma 2.1 and can be found in [14]. 

Lemma 2.3. Let a ~ C°'#(D) be a divergence-free vector field. Then there exists a unique 
solution v E C2(D) n C(D)  with curl v e C(D)  of 

curl c u r i o = a ,  d i v v = 0  i n D  (2.13) 

Lemma 2.3. Let a ~ CU'l'(_D) be a divergence-free vector field. Then there extsts a umque 
solution v E C2(D) n C(D)  with curl v e C(D)  of 

curl c u r i o = a ,  d i v v = 0  i n D  (2.13) 
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with vanishing tangential components 

[n, v] = 0  on OD. (2.14) 

The solution and its curl belong to Cz'#(D) and satisfy a-priori estimates 

Itvlll,~< f l la l lo ,~ ,  I l c u r l v l l l , a < f l l a l l 0 , ~  (2.15) 

with some constant C. 

Proof: Firstly, by Lemma 2.2 there exists a unique vector field w satisfying div w = 0, 
curl w = a in D with vanishing normal components (n, w) = 0 on 0D and vanishing flux 
through S. Secondly, by Lemma 2.1, we find v as the unique solution of div v = 0, 
curl v = w in D with vanishing tangential components [n, v] = 0 on ÙD. 

Now we are ready to establish our main existence result on constant-alpha force-free 
fields. We consider the following inhomogeneous Neumann problem: find a vector field 
B ~ CZ(D) n C(D) satisfying the inhomogeneous constant-alpha force-free field equation 

c u r l B - a B = a A  i n D  (2.16) 

with normal components 

(n, B) = g  on bD (2.17) 

and flux 

f s (n ,  B) ds = f  (2.18) 

through S. Here, A ~ C°'#(D) is a given vector field with divA ~ C°'#(D), g ~ C°'#(OD) 
a given scalar function and f a given real number. By Stokes' theorem, the condition 

f~D((n, A ) + g }  d s = O  (2.19) 

is necessary for the compatibility of (2.16) and (2.17). Therefore, henceforth, we will 
assume (2.19) to be fulfilled. Note, that in the homogeneous case A = 0 and g = 0, by 
Stokes' theorem, the flux condition (2.18) does not depend on the choice for S. 

In order to equivalently transform this Neumann boundary-value problem into an 
equation of the second kind we need to introduce the appropriate operators. By V we 
denote the normed space 

V:= ( a ~ C°'/3( D ) : div a = O i n  D)  

equipped with the usual H61der norm. Consider the operator G : V ~ V mapping a ~ V 
into the solution to the boundary-value problem (2.13) and (2.14) of Lemma 2.3. Because 
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of the a-priori estimate (2.15) the operator K:  V---} V, defined by Ka .'= curl Ga, is 
compact (see [3], Theorem 2.5). Using curl curl Ga = a we find the differential equation 

curl Ka = a in D (2.20) 

and from [n, Ga] --0 on aD, by using (n, curl Ga) = - div[n, Ga] on 0D, we observe the 
boundary condition 

(n, Ka) = 0 on aD. (2.21) 

Finally, from Stokes' theorem and [n, Ga]--0 on 0D, we derive that Ka has vanishing 
flux 

fs(., Ka) ds = 0 ( 2 . 2 2 )  

through S. 

Theorem 2.4. The Neumann boundary-value problem for constant-alpha force-free fields is 
equivalent to the operator equation of the second kind 

(is ) ( B + A ) - a K ( B + A ) = A  +grad u+ f -  ~ndS Z (2.23) 

where u denotes a solution of the Neumann problem for Poisson' s equation 

Au= - d i v A  in D (2.24) 

with normal derivative 

Ou 
On = g on OD. (2.25) 

Proof. We first observe that (2.19) ensures that the solvability condition for the Neumann 
problem (2.24) and (2.25) is satisfied. The solution is unique up to an additive constant 
and its gradient belongs to C°'P(D) (see [7], Theorem 6.31). Let B be a solution to the 
Neumann boundary-value problem (2.16) to (2.18) and set 

f O U d s l  b : = B - a K ( B + A ) - g r a d u -  f - J s O n  ]Z. 

Note that b is well defined since div(B + A) = 0 in D. Then, from (2.1) to (2.3), (2.16) to 
(2.18), (2.20) to (2.22), and (2.24) to (2.25), we find that b satisfies div b = 0 and 
curl b = 0 in D and has vanishing normal components (n, b ) =  0 on 0D and flux 
fs(n, b ) d s  = 0 through S. Therefore, the Neumann vector field b must be zero, that 
means B solves equation (2.23). 

Conversely, let B solve the equation (2.23). Note, that the right-hand side of (2.23) 
belongs to V because of (Z24). Then, again using (2.1) to (2.3), (2.20) to (2.22) and (2.25) 
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we find that B satisfies curl B - aB = aA in D, has normal components (n, B) = g on 
bD and flux fs(n, B) ds = f  through S, that means B solves the boundary-value problem 
(2.16) to (2.18). 

For the further investigation of equation (2.23) we introduce a scalar product (., -)v 
on V by 

(a, b)v '= fo(curl Ga, curl Gb) dx. 

Since (a, a )v  = 0 implies curl Ga = 0 in D, from div Ga = 0 in D and [n, Ga] = 0 on D 
and Lemma 2.1 it follows that Ga = 0 in D. Then we have a = curl curl Ga = 0 in D, that 
means, (., . )v indeed is positive definite. The operator K is self-adjoint with respect to 
this scalar product. This follows from Gauss' theorem: 

(Ka, b )v= fo(curl(G curl Ga), curl Gb) dx 

= fD(CUrl curl(G curl Ga), Gb) dx + f0D(CUrl(G curl Ga), [n, Gb]) as 

= fo(curl Ga, Gb) d x :  fo(Ga, curl Gb) d x +  foo([n, Ga], Gb) ds 

= fD(Ga, curl Gb) dx. 

Theorem 2.5. There exists a countable set of real numbers or, accumulating only at infinity, 
for which the homogeneous constant-alpha force-free field equation 

curl B = aB in D (2.26) 

with homogeneous boundary condition 

(n, B) = 0  on aZ~ (2.27) 

and vanishing flux 

fs(n, B) ds = 0 (2.28) 

through S has a finite number of finearly independent solutions. For all numbers a not 
belonging to this set of eigenvalues there exists a unique solution of the inhomogeneous 
problem (2.16) to (2.18) for all inhomogeneities satisfying the compatibility condition (2.19). 

Proof The existence of eigenvalues follows by standard arguments for compact self 
adjoint operators in positive dual systems (see [9], Theorem 5.20): there exists a countable 
set of real numbers a, accumulating only at infinity, for which the homogeneous equation 

B - a K B  = 0 
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has a finite-dimensional null space. For all values of a different from these eigenvalues, 
by the Riesz theory for compact operators (see [3]) the inhomogeneous equation (2.23) has 
a unique solution B. This, in view of the equivalence Theorem 2.4, completes our proof. 

Remark 2.6. By the Fredholm theory for compact operators (see [3]) in the case where a is 
an eigenvalue, the inhomogeneous problem is solvable if and only if the condition 

SD(GB, A+gradu+(f-fs~nds)Z)dx=O (2.29) 

is satisfied for all solutions B to the homogeneous problem (2.26) to (2.28). Condition 
(2.29) can be seen to be equivalent to the form given in Theorem 6.2 of [12]. 

Summarizing, we see that for each a the homogeneous Neumann problem (2.4) and (2.5) 
for constant-alpha force-free fields has a solution. For those a not belonging to the set of 
eigenvalues from Theorem 2.5 there exactly one linearly independent solution with flux 
different from zero. If a is an eigenvalue of multiplicity m then obviously we have m 
linearly independent solutions of (2.4) and (2.5) with vanishing flux. In addition, there 
exists a further solution with flux different from zero in the case where the solvability 
condition (2.29) is satisfied for A = 0 and u = 0 in D. 

Remark 2. 7. From our analysis it is clear that solutions to the inhomogeneous Neumann 
problem for constant-alpha force-free fields are real-valued provided the inhomogeneities 
are real-valued. For the eigenvalues the solutions to the homogeneous problem also may 
be chosen to be real-valued. 

3. Axially symmetric solutions 

For the remainder of this paper we will consider the case where the domain D c R 3 is 
axially symmetric with cross-section S c R 2. For those values of a for which the 
homogeneous problem (2.26) to (2.28) admits only the trivial solution the fields satisfying 
(2.4) and (2.5) must be axially symmetric because of uniqueness reasons. No te  that 
solutions of (2.26) to (2.28) may be non axially symmetric. 

The axially symmetric case can be reduced to solving a two-dimensional Dirichlet 
boundary-value problem in the cross-section S. By using cylindrical coordinates (r, ~0, z), 
it is easily verified that the homogeneous Neumann constant-alpha force-free field 
problem 

curl B = aB in D (3.1) 

and 

(n, B ) = 0  o n a D  (3.2) 

is equivalent to solving the Dirichlet problem 

~ 1 (rB,) + ~ + a 2 B r = 0  i n S  
7 az 2 

(3.3) 
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with boundary condition 

trr (rBr)+t~-~z =0 o n a S  (3.4) 

for the component B~ in ~0-direction and then taking 

l a B ~  1 
B,= ~ az and B z -  (rB~) ¢xr Or 

for the components B r and B z in r- and z-direction. Here, t = (tr, tz) denotes the unit 
tangential vector to the boundary as  such that It, n] = er, with e~ the unit vector in 
q0-direction. The boundary condition (3.4) is equivalent to 

rB~ = const on as.  (3.5) 

Hence, for each a the homogeneous problem (3.1) and (3.2) has axially symmetric 
solutions. Note that there exists a countable set of Dirichlet eigenvalues, accumulating 
only at infinity, for which the equation (3.3) admits nontrivial solutions with homoge- 
neous boundary condition 

B~0 = 0 on as.  (3.6) 

For those a not belonging to these Dirichlet eigenvalues there exists exactly one linearly 
independent axially symmetric solution to (3.1) and (3.2) and this solution is char- 
acterized by the property rB~ = const ~ 0 on aD. 

If a is such a Dirichlet eigenvalue with multiplicity m then obviously the homogeneous 
problem (3.1) and (3.2) has m linearly independent axially symmetric solutions with the 
property B~ = 0 on aD. In addition, there exists a further nontrivial solution with 
rB~ = const ~ 0 on aD in the case where the solvability condition for the inhomogeneous 
Dirichlet problem (3.5), namely 

is satisfied for all solutions Br to the homogeneous problem (3.6). 
We will now derive a boundary integral equation for these axially symmetric solutions 

which is uniquely solvable for all a different from a Dirichlet eigenvalue for (3.3). This 
integral equation will be based on the representation formula 

B(x) = cur l fao[B(y) ,  , ( y ) ]  ~ ( x ,  y )  d s ( y )  

+afao[B(y), n(y) l~(x ,  y) d s ( y ) ,  x~D,  (3.7) 
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for solutions B E CI(D) C3 C(D) of the constant-alpha force-free field equation (3.1) with 
vanishing normal components (3.2) on aD. Here, 

1 e ia lx-y l  

• ( x , Y ) = 4 c r  I x - y l '  x*y ,  

denotes the fundamental solution to the Helmholtz equation. A proof of (3.7) is contained 
in [13]. It also can be derived from the Stratton-Chu representation formula for solutions 
to the vector Helmholtz equation (see [3], Theorem 4.11). Letting x tend to the boundary 
with the aid of the jump relations for single-layer vector potentials (see [3], Theorem 2.26) 
we derive the integral equation 

y(x) + 2 fan[n(x ), curlx{tb(x, Y)'Y(Y)} + adP(x, y) ' t (y ) ]  d s ( y ) = 0 ,  

x ~ aD, (3.8) 

for the unknown tangential component 

of B on the boundary aD. For the axially symmetric case we can write 

y=T/ t+~e~ on aS, 

that is 

Bta n = ~ t - ~ e ~  onaS.  

From [3.5] we already know that 

r*/= const on aS. (3.9) 

From [3.5] we already know that 

r , /=  const on aS. (3.9) 

Therefore, we only need to determine the remaining unknown component 8 from the 
integral equation (3.8). For fixed x ~ aD the functions (t(x), %(y)) and ([t(x), t(y)], x 
- y )  are odd functions with respect to y ~ aD. Therefore, from symmetry reasons we see 
that 

fao(t(x)' e~(y))t~(x, y)~b(y) d s ( y )  = 0, x ~ aD, (3.10) 

and 

fao(t(x), [gradx~(x, y), t(y)])~(y) ds(y)=O, x~OD, (3.11) 
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for axially symmetric functions ~. Hence, taking the %-component of (3.8), we arrive at 
the scalar integral equation 

8 ( x ) -  2fao(t(x ), [gradx~(x, y), %(y) l )8(y)  ds (y )  

= 2afaD(t(x), t(y))d)(x, Y)*I(Y) ds (y ) ,  x ~ aD, (3.12) 

for the unknown 8. Since we have already established existence of solutions to the 
homogeneous Neumann problem (3.1) and (3.2), given 7/ through (3.9), the existence of 
solutions to the integral equation (3.12) is immediate. Hence we need only be concerned 
with the question of uniqueness. Once the integral equation is solved, the solution to the 
boundary-value problem is obtained through (3.7). 

Let 8 be an axially symmetric solution to the homogeneous equation 

8(x) - 2 fa D ( t(x), [grad~(x, y ) , % ( y ) ] ) 8 ( y ) d s ( y ) = O ,  x ~ a D .  

Defining 3' .'= 8% and again employing the symmetry relation (3.11), we see that 3' solves 
the homogeneous vector integral equation 

y(x) + 2faD[n(x ), cur lx(~(x,  y)3 ' (y)}]  d s ( y )  =0 ,  x ~ 0D. 

Now by the jump relations, the last equation implies that the field 

E(x) := curlfaoT(y)t~(x , y) ds (y ) ,  x ~ R3\OD, 

has vanishing tangential components 

[n, E + ] = 0  onaD. 

Here, by the indices + and - we distinguish the limits obtained when approaching the 
boundary 0D from inside R 3 \ ~  and D, respectively. Since E satisfies the Silver-Miiller 
radiation condition, by the uniqueness for the exterior boundary-value problem for the 
reflection of electromagnetic fields at perfect conductors we conclude that E = 0 in the 
exterior domain R 3 \ D  (see [3], Theorem 4.18). Then by the jump relations we get 

[n, curl E _ ] = 0  onOD. 

Hence, B := curl E is an axially symmetric solution to the Maxwell equations 

curl curl B - a2B = 0 in D (3.13) 

with vanishing tangential components 

[n, B] =0  onaD. (3.14) 
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Since B has only a nonvanishing component B~ in %-direction, the equation (3.13) 
coincides with (3.4) and the boundary condition (3.14) requires B~ = 0 on aD. Therefore, 
provided et is not a Dirichlet eigenvalue for (3.4) we have B~ = 0 in D and from 
curl curl E - a2E = 0 we also see that E = 0 in D. Now, finally the jump relations yield 
- /= [n, E+] - [n, E_] = 0 on OD and therefore $ = 0 on 3D. Note, that in the case where 
et is a Dirichlet eigenvalue we do not have uniqueness for (3.12). We can summarize our 
results into the following 

Theorem 3.1. The integral equation (3.12) with the right-hand side given through (3.9) has a 
unique solution provided a is not a Dirichlet eigenvalue for (3.4). Its solution gives the 
tangential component of a constant-alpha force-free field with vanishing normal components 
on the boundary. 

Note that, due to the axial symmetry, equation (3.12) of course essentially is an integral 
equation over the boundary bS of the cross-section S. 

The integral equation (3.12) has complex-valued kernels despite the fact that by 
Remark 2.7 the solutions are real-valued. The reason for this lies in the fact that for the 
uniqueness proof we need to incorporate the radiation condition which requires the 
complex-valued fundamental solution to the Helmholtz equation. 

4. Numerical solution of the integral equation 

In this final section we will describe the numerical solution of the integral equation (3.12). 
Let 

x ( o )  = ( r ( o ) ,  z ( ° ) ) ,  0 <. o 

be a parametric representation of the boundary OS to the cross-section S. Note that 
r (o )  > 0 for all 0 ~< o < 2~r., Then, the boundary aD of the axially symmetric domain D is 
given by 

x (o ,  q0) = ( r ( o )  cos q0, r ( o )  sin ¢p, z ( o ) ) ,  0 < o, q~ < 2~'. 

It is a matter of straightforward calculations to transform the axially symmetric surface 
integrals over 3D into integrals over the parameter domain [0, 2¢r]. Introduce 

R(a, z, q0).'= {[r(a)]  2 -  2r(o)r(T) cos q0+ [r(~)] 2 + [ z ( o ) -  z(~')]2} 1/2. 

Then the integral equation (3.12) takes the form 

1 r 2 ~ r  . O/ f 2 q t  . 

~ ( o ) - - ~ - ~ J o  H(o,~)~(~ ' )d~=-~---~Jo L (o ,~ )~ (~ ' ) d1" ,  0~<o~<2¢r, (4.1) 

for g (o ) :=  {[r'(a)] 2 + [z'(a)] 2 }1/28(x(o)) and ~(o)-'= ~/(x(o)). The kernels are given by 

H(o,  ¢):= fo2~rr('r){z'(o)[r(o) cos ¢p- r (z ) ]  + [ z ( ~ ' ) -  z (o) ]  r ' ( a )  cos ¢p} 

1 d e iaR 

× R dR ~ d ~  (4.2) 



and 

335 

fo eiaR L(o, ~):= 2~r(T)(r'(o)r'(~) cos ep+ z'(o)z'(~))---~d~p. (4.3) 

For a satisfactory numerical approximation a careful investigation of the nature of the 
singularity of the kernels is necessary. Since essentially we are solving a two-dimensional 
boundary-value problem in the cross-section S we expect a logarithmic singularity when 
o = ~-. Our analysis extends a procedure used by Martensen [16] in the limiting potential- 
theoretic case a = 0. For integers m we define integrals 

and 

Ira(o, r ) : =  f 2 " [ R ( o ,  T, ¢p)] m-1 d~ 
~0 

Jm(g, ,I'):= f02~rcos i~[R(o', ,'/-, q))] m-1 d~. 

Then, through partial integration, we readily derive the recurrence relations 

/,.+2 =pI,. - qJm 

and 

(m + 3)Jm+ 2 = (m + 1) [pJ  m - qI,,] 

for all m. Here, we have set 

p(o, "r):= [ r (o) ]  z + [r(~)] 2 + [z (o)  - z ( r ) ]  2 

and 

q(o, r):= 2r(o)r(r). 

For even indices the initial terms are given through 

4 
Io-  (p+q)l /2K(k)  

and 

4 [ p K ( k ) - ( p + q ) E ( k ) ]  Jo - q(p + q)1/2 

where 

2q(o, ~) ~1/2 
k(a ,  ~'):= p ( , ,  ~.)+ q(o,  ~') 

(4.4) 

(4.5) 



336 

and where E and K denote the complete elliptic integrals 

E(k)  = fo"/=(a - k z sin2qo) 1/2 d~o 

and 

K(k)  = g / z ( 1  - k z sin2cp) -1/z drp 

with modulus 0 ~< k < 1. Hence, for m even we can split 

I m = I~E(k)  + I~K(k),  Jm = JmEE(k) + J2K(k)  

where the coefficients satisfy the recurrence relations (4.4) and (4.5) with initial terms 

4 
IOE = 0, I~:-- ( p + q)1/2' 

and 

4 4p j f f = _ q ( p + q ) l / 2 ,  J r -  q( p + q)l/U " 

For odd indices we have the initial terms I x -- 2~r and J1 = 0. 
Integrating the power series for the exponential term by term we find 

m(o, . )  = : ( o ,  . )E(k)  + LK(o, . )K(~)  + m'(o, . )  

where 

oo ( _  1) mot2,, 
LE(O, r )=r (¢ )  z '(o)z '(¢) ~., (2m)! 1~,~ 

I. m=O 

+r'(o)r'(r) ~ (-1)ma2mjfl ] 

¢)=r(,r)(zt(o)z'(¢) ~ (--1)m"2m L/((o, 
m - - O  (2m)! I:m / 

] +r'(o)r'(¢) E (--1)m°t2mj'K 
m=o (2m)! zm, , 

Li(o, ¢) = i r ( r )  
oo 

z ' (o)z ' (r)  ~_, (--1)ma2m+' 
, . -o  ( 2 m +  1)! I2m+X 

] +r'(a)r ' (r)  ~_~ (--1)ma2m+X 
~ - o  ( 2 m + 1 ) !  4 . + ~  • 

(4.6) 
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These series can be numerically evaluated with the help of the recurrence relations for I,, 
and Jm. Note that (4.4) and (4.5) are unstable, but they can be transformed into 
recurrence relations for 

0/m 0/m 
/~ .'= ~--TI~ and L := ~-~.~ J,, 

which turn out to be stable for a not too large. 
Similarly we derive 

n(o, ~)= n~(o, ,)E(k) + HK(o, ,)K(k)+ H'(o, ~) (4.7) 

where 

, ) + r ( , ) [ r ( , ) z , ( a ) a 2  £ ( - 1 )  ma2" G HE(o, r) = M ( o ,  
m=o (2m)! 2 m + 2  t 

X { [z (o)  - Z(T)] r'(o) - r(o)z'(o)} 

X + ~2 _ _  
q(p + q)l/2 m=0 (2m)! 2m + 2 ' 

• )=r(T)[ r (~)z ' (o)a 2 £ (-1) "a2" l~m Hr(o, 
m=o (2m)! 2m + 2 [ 

X { [Z(O) - z(m)]r'(a) - r ( o ) z ' ( a ) }  

X 
- 4  -t- °t2 £ ( -  1)m0t2m J2Km /] 

q(p + q)l/2 m=0 (2m)! 2m + 2 ] j '  

~)=ia2r(~)[r(¢)z,(o)£ (--1) mOz2m+l 12m+l Hi(o, 
L ,no (2 r e+ l ) !  2 m + 3  

X { [z (o)  - z(~)]  r ' (o )  - r(o)z'(o)} 

X £ (--1)m°L2m+l 4=+1 
m--0 ( 2 r e + l ) !  2 m + 3  

For the leading term M in the expression for H E from 

1_2= 4 1 (p + q)1/2 p-  qE(k) 
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and 

J-2 

we obtain 

M(o, ¢ ) =  

4 (p+q)l/2[pl~_qE(k)-l(K(k)-E(k))]  

4 r ( ¢ ) { [ r ( ~ )  - r (o)]  z'(o) + [z (o)  - z(*)] r ' (o )}  

[p(o, ~) + q(o, z)]x/2{[r(o) - r(v)] 2 + [z(o) - z($)]2}' 

M(o, o)= z'(o)r"(o)- r'(o)z'(o) 
[r'(o)]2+[z'(o)] 2 

o q = , r .  

and 

K(k) = 2 1 n 4 K ( k ' ) +  K(k') 

where k' denotes the complementary modulus 

k '  = (1 - k2) 1/2 

and where E a n d / ~  are analytic functions for 0 < k'  < 1 with/~(0) = 1 and K(0) = 0. In 
particular, there holds E(1) = 1 and lim k_.t[K(k) - In 4/k'] = 0. We can transform 

2 1 n ~ 7 , = - l n ( 4  " 2 ° - ' '  sm ~ ]  + g ( o ,  ~) 

with a smooth function g given by 

g(o, I") ln[64sin 2 ° - ' p ( ° '  ~')+q(o,~')] = - -  , O ~ " r ,  2 p(o,~') q(o, 

64[r(o)]  2 g(o, a) = In 
[ r ' ( o ) ]  2 + [ z , ( o ) l  2" 

Therefore we finally can split the kernels of (4.1) in the form 

Z(o, "r)=Zl(o, ~') ln(4 " z ° - ¢ ~  sm ~ ] + H2(o, "r) (4.8) 

E(k) = 2 1 n 4  [ K ( k ' )  - E (k ' ) ]  + J~(k') 
~r k '  

For k = 1, that is for o = % the complete elliptic integrals have logarithmic singularities of 
the form (see [5]) 
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L ( o ,  " r ) = L l ( o  , "r) ln(4 " 2 ° - ~ ' ]  s,n - - - i - -  ) + L2 ( o, "r ) (4.9) 

Hi(o , "r) = - 1--He(o, ¢ ) [ K ( k ' )  - E ( k ' ) ]  - 1HK(o,  "r)K(k'), 
,Tr "17 

LI(o, ¢) = - 1 L e ( o ,  ~ ) [K(k' )  - E(k')]  - 1LK(o ,  .,')K(k'), 
' /7 

I-I2(o , z ) = H ( o , . r ) - H l ( o , , ) l n  4 s m ~  , o * , ,  

Ha(O, o) = He(o,  o) + l l n  64[r(°)12 n r ( o ,  o) + n~(o, o). 
[ r , ( o ) ] ~ + [ z , ( o ) ] ~  " 

. 2 o - ' : ~  L2(o, , )  = L(o,  ":) - Ll(o,  ":) In 4 sin - - - -~} ,  o * ~-, 

L2(o, o) = Le(o, o) + l ln 64[r(°)12 LK(o, o) + Li(a, o).  
[ r ' (o ) ]  2 + [ z ' ( o ) ]  2 

In this decomposition the coefficients H1, H2, L x and L 2 a r e  continuous functions 
provided the boundary 3S is of class C 2. If 0S is analytic then the coefficients are 
analytic. 

For the numerical approximation we choose an equidistant set of knots 

ok:=-~k, k =  0 , . . . , 2 N -  1, 

and choose the quadrature formulae 

1 f02~f(o) do - 1 2N-1 2---~ ~ ~" f(Ok) (4.10) 
k = 0  

and 

2 N - I  

-:o 1 ~ f ( a )  In 4 sin ~ d o =  ~ Rkf(Ok) (4.11) 
2~r k = 0  

where the weights R k a r e  given by 

1 
Rk--  - ~  

N l ~ } c o  ok 
(-1)-------~k + E k = 0  . . . .  2 N -  1 

2 N  ' " " 
j = l  
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These quadrature rules are obtained by replacing f by its trigonometric interpolation 
polynomial and then integrating analytically (see Martensen [16]). Provided f is analytic, 
according to derivative-free error estimates for the remainder term in trigonometric 
interpolation (see Kress [10]) in the spirit of Davis' method [4], the error of the quadrature 
rules (4.10) and (4.11) decreases at least exponentially when the number 2N of knots is 
increased. 

We employ NystriSm's quadrature method and replace (4.1) by the approximating 
linear system 

2N-1  

8,- ~ {R 
¢=0 

1 ,j-k,//l(O,, oj) + i-~H~(",, "j)} ~j 

2N-1  

j - 0  
(4.12) 

Figure 1. R - l ;  a=0 .5 ;  b=0.5;  a = l .  

Figure 2. R = I ;  a=0.5;  b=0.5;  a = 2 .  



Figure 3. R=I ;  a=0.5; b=0.5; a=3.  
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Figure 4. R ~ I ;  a=0.5; b=0.5; a=4.  

Figure 5. R=I ;  a=0.5; b=0.5; a=6.  
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Figure 6. R=I; a=0.5; b=0.25; a=l.  

Figure 7. R=I; a=0.5; b=0.25; a=2. 

Figure 8. R=I; a=0.5; b=0.25; a~3. 

for approximate values 8 k for the solution g(o,)  with */k = ~(o,). By the usual error 
analysis (see [1]) for NystriSm's method for weakly singular integral equations of the 
second kind the behaviour of the quadrature error for (4.10) and (4.11) carries over to the 
error of the approximate solution to (4.1) obtained from (4.12). In particular, this means 
that doubling the number 2N of knots will double the number of correct digits in the 
approximate solution. 



Figure 9. R = I ;  a=0.5;  b=0.25; a = 4 .  
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Figure 10. R = I ;  a=0.5;  b=0.25; a=6 .  

F o r  the numer ica l  example  we choose  an ell ipse 

r ( o )  = R + a cos a ,  z ( o )  = b sin o 

as cross-section.  W e  i l lustra te  the numer ica l  results  through Figures  1 to 10 showing the 
f ield lines on the b o u n d a r y  for r = 1 and  for  a = 1, 2, 3, 4 and  6 in  the case of  a circle 
a = 0.5 and  b = 0.5 and  an ell ipse a = 0.5 and  b = 0.25. 
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